Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 15, 2017 | Supplemental Material
Journal Article Open

The transfer of bomb radiocarbon and anthropogenic lead to the deep North Atlantic Ocean observed from a deep sea coral

Abstract

Deep-ocean, Δ^(14)C, Pb concentrations, and Pb isotopes were reconstructed from a deep-sea coral Enallopsammia rostrata from 1410 m depth off of Bermuda. Our high-resolution time series is created from closely spaced radial cross sections, with samples taken from the center of concentric coral growth bands that we show to be the oldest portion of the section. Prebomb radiocarbon ages from the coral demonstrate that the vertical growth rate of the coral is linear, and the age of the coral is estimated to be 560–630 yr old based on the growth rate. Using this age model to reconstruct Δ^(14)C in deep seawater, we first detect bomb radiocarbon at the coral growth site around 1980, and show that Δ^(14)C increased from −80±1‰−80±1‰ (average 1930–1979) to a plateau at −39±3‰ (1999–2001). Pb/Ca of the coral ranges between 1.1–4.5 nmol/mol during the 16th and 17th centuries, and Pb isotope ratios (^(206)Pb/^(207)Pb = 1.21, ^(208)Pb/^(207)Pb = 2.495) in this period agree with pre-anthropogenic values found in the pelagic sediments of the North Atlantic Ocean basin. Coral Pb/Ca is slightly elevated to 6.2±0.9 nmol/mol between the 1740s and the 1850s and then increases to 25.1±0.2 nmol/mol in the 1990s. The increase in coral Pb/Ca is accompanied by a decrease in coral ^(206)Pb/^(207)Pb and ^(208)Pb/^(207)Pb, indicating that the increase was caused by the infiltration of anthropogenic Pb to the coral growth site. Comparing our data to the surface coral Δ^(14)C and Pb records from Bermuda reveals a time scale of tracer transport from the surface ocean to the coral growth site. Some characteristic features, e.g., the bomb-derived Δ^(14)C increase, appear in the deep ocean approximately 25 yr later than the surface, but the overall increase of Δ^(14)C and Pb in the deep ocean is smaller and slower than the surface, showing the importance of mixing during the transport of these tracers.

Additional Information

© 2016 Elsevier B.V. Received 1 August 2016, Revised 21 October 2016, Accepted 24 October 2016, Available online 9 December 2016. We thank the WHOI Alvin group and the crew of the Atlantis for recovering sample ALV 3701-8. We also thank Rick Kayser for maintaining the PQ2+ ICP-MS for Pb analysis. This work was supported by NSF grants OCE-0926197 and OCE-1503129.

Attached Files

Supplemental Material - mmc1.docx

Files

Files (30.0 kB)
Name Size Download all
md5:b4ec65b503cb9571738342a3b0070fe8
30.0 kB Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023