Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2014 | public
Book Section - Chapter

"Thin silicon solar cells: A path to 35% shockley-queisser limits", a DOE funded FPACE II project

Abstract

Crystalline silicon technology is expected to remain the leading photovoltaic industry workhorse for decades. We present here the objectives and workplan of a recently launched project funded by the U.S. Department of Energy through the Foundational Program to Advance Cell Efficiency II (FPACE II), which aims at leading crystalline silicon to an efficiency breakthrough. The project will tackle fundamental approach of materials design, defect engineering, device simulations and materials growth and characterization. Among the main novelties, the implementation of carrier selective contacts made of wide bandgap material or stack of materials is investigated for improved passivation, carrier extraction and carrier transport. Based on an initial selection of candidate materials, preliminary experiments are conducted to verify the suitability of their critical parameters as well as preservation of the silicon substrate surface and bulk properties. The target materials include III-V and metal-oxide materials.

Additional Information

© 2014 IEEE. The authors acknowledge funding from the U.S. Department of Energy under contract DE-EE0006335.

Additional details

Created:
August 20, 2023
Modified:
October 24, 2023