Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 7, 2011 | Accepted Version + Published + Supplemental Material
Journal Article Open

Dynamical mean-field theory from a quantum chemical perspective

Abstract

We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree–Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.

Additional Information

© 2011 American Institute of Physics. Received 16 December 2010; accepted 31 January 2011; published online 7 March 2011. This work was supported by the Department of Energy (DOE), Office of Science. We acknowledge useful conversations with A. J. Millis, C. A. Marianetti, D. R. Reichman, E. Gull, and G. Kotliar.

Attached Files

Published - 1_2E3556707.pdf

Accepted Version - 1012.3609.pdf

Supplemental Material - supplement.tex

Files

1_2E3556707.pdf
Files (746.2 kB)
Name Size Download all
md5:c153702c73c426b88ea1122c2ecd40dd
404.4 kB Preview Download
md5:8a23214995c7dec80e917b28e264c23b
338.9 kB Preview Download
md5:9395e331be33b59d064b662dbc0d2562
2.8 kB Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023