Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2017 | public
Journal Article

Geometrical shock dynamics for magnetohydrodynamic fast shocks

Abstract

We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as ϵ^(-1), where ϵ is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock.

Additional Information

© 2016 Cambridge University Press. Received 2 September 2016; revised 25 October 2016; accepted 10 November 2016; first published online 12 December 2016. This research was supported by the KAUST Office of Sponsored Research under award URF/1/2162-01. V.W. holds an Australian Research Council Discovery Early Career Researcher Award (project number DE120102942).

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024