Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 26, 2016 | Published
Book Section - Chapter Open

Investigating interoperability of the LSST Data Management software stack with Astropy

Abstract

The Large Synoptic Survey Telescope (LSST) will be an 8.4m optical survey telescope sited in Chile and capable of imaging the entire sky twice a week. The data rate of approximately 15TB per night and the requirements to both issue alerts on transient sources within 60 seconds of observing and create annual data releases means that automated data management systems and data processing pipelines are a key deliverable of the LSST construction project. The LSST data management software has been in development since 2004 and is based on a C++ core with a Python control layer. The software consists of nearly a quarter of a million lines of code covering the system from fundamental WCS and table libraries to pipeline environments and distributed process execution. The Astropy project began in 2011 as an attempt to bring together disparate open source Python projects and build a core standard infrastructure that can be used and built upon by the astronomy community. This project has been phenomenally successful in the years since it has begun and has grown to be the de facto standard for Python software in astronomy. Astropy brings with it considerable expectations from the community on how astronomy Python software should be developed and it is clear that by the time LSST is fully operational in the 2020s many of the prospective users of the LSST software stack will expect it to be fully interoperable with Astropy. In this paper we describe the overlap between the LSST science pipeline software and Astropy software and investigate areas where the LSST software provides new functionality. We also discuss the possibilities of re-engineering the LSST science pipeline software to build upon Astropy, including the option of contributing affliated packages.

Additional Information

© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). We thank those who attended the LSST/Astropy Summit at the University of Washington in March 2016 that forms the basis for the approaches outlined in this paper. We thank Chris Walter, Ben Emmons, Adam Ginsburg and Brigitta Sipocz for comments on the draft manuscript. This material is based upon work supported in part by the National Science Foundation through Cooperative Support Agreement (CSA) Award No. AST-1227061 under Governing Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.

Attached Files

Published - 99130G.pdf

Files

99130G.pdf
Files (462.9 kB)
Name Size Download all
md5:193b8487f447dc88b3fd1ea3698858b5
462.9 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 13, 2024