Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
- Creators
- Shao, Yihan1
- Gan, Zhengting1
- Epifanovsky, Evgeny1, 2, 3
- Gilbert, Andrew T. B.4
- Wormit, Michael5
- Kussmann, Joerg6
- Lange, Adrian W.7
- Behn, Andrew3
- Deng, Jia4
- Feng, Xintian2
-
Ghosh, Debashree2, 8
- Goldey, Matthew3
- Horn, Paul R.3
- Jacobson, Leif D.7
- Kaliman, Ilya9
- Khaliullin, Rustam Z.3
- KuÅ›, Tomasz2
- Landau, Arie2, 10
- Liu, Jie11, 7
- Proynov, Emil I.1, 12
- Rhee, Young Min3, 13
- Richard, Ryan M.7
- Rohrdanz, Mary A.7, 14
- Steele, Ryan P.15
- Sundstrom, Eric J.3
- Woodcock, H. Lee16
- Zimmerman, Paul M.3, 17
- Zuev, Dmitry2
- Albrecht, Ben18
- Alguire, Ethan19
- Austin, Brian J.3
- Beran, Gregory J. O.20
- Bernard, Yves A.2
- Berquist, Eric1
- Brandhorst, Kai3, 21
- Bravaya, Ksenia B.2, 22
-
Brown, Shawn T.1, 23
- Casanova, David3, 24
- Chang, Chun-Min1
- Chen, Yunqing17
- Chien, Siu Hung1
- Closser, Kristina D.1
- Crittenden, Deborah L.4, 25
- Diedenhofen, Michael
- DiStasio, Robert A.3
- Do, Hainam26
- Dutoi, Anthony D.27
- Edgar, Richard G.28
- Fatehi, Shervin19, 15
- Fusti-Molnar, Laszlo1
- Ghysels, An29, 30
- Golubeva-Zadorozhnaya, Anna2
- Gomes, Joseph3
- Hanson-Heine, Magnus W. D.26
- Harbach, Philipp H. P.5
- Hauser, Andreas W.3
- Hohenstein, Edward G.31
- Holden, Zachary C.7
- Jagau, Thomas-C.2
- Ji, Hyunjun32
- Kaduk, Benjamin33
- Khistyaev, Kirill2
- Kim, Jaehoon32
- Kim, Jihan3, 32
- King, Rollin A.34
- Klunzinger, Phil
- Kosenkov, Dmytro9, 35
- Kowalczyk, Tim33, 36
- Krauter, Caroline M.5
- Lao, Ka Un7
- Laurent, Adèle D.2, 37
- Lawler, Keith V.3, 38
- Levchenko, Sergey V.2, 39
- Lin, Ching Yeh4
- Liu, Fenglai1, 8
- Livshits, Ester40
- Lochan, Rohini C.3
- Luenser, Arne6
- Manohar, Prashant2, 41
- Manzer, Samuel F.3
- Mao, Shan-Ping42
- Mardirossian, Narbe3
- Marenich, Aleksandr V.43
- Maurer, Simon A.6
- Mayhall, Nicholas J.3
- Neuscamman, Eric3
- Oana, C. Melania2
- Olivares-Amaya, Roberto28, 44
- O'Neill, Darragh P.4
- Parkhill, John A.3, 45
- Perrine, Trilisa M.17, 46
- Peverati, Roberto43, 3
- Prociuk, Alexander17
- Rehn, Dirk R.5
- Rosta, Edina2, 47
- Russ, Nicholas J.1
- Sharada, Shaama M.3
-
Sharma, Sandeep44
- Small, David W.3
- Sodt, Alexander3, 29
- Stein, Tamar40, 14
- Stück, David3
- Su, Yu-Chuan42
- Thom, Alex J. W.3, 48
- Tsuchimochi, Takashi33
- Vanovschi, Vitalii2
- Vogt, Leslie28
- Vydrov, Oleg33
- Wang, Tao2
- Watson, Mark A.44, 28
- Wenzel, Jan5
- White, Alec3
- Williams, Christopher F.7
-
Yang, Jun44
- Yeganeh, Sina33
- Yost, Shane R.3, 33
- You, Zhi-Qiang49, 7
- Zhang, Igor Ying50
- Zhang, Xing7
- Zhao, Yan43
- Brooks, Bernard R.31
-
Chan, Garnet K. L.44
- Chipman, Daniel M.45
- Cramer, Christopher J.43
-
Goddard, William A.51
- Gordon, Mark S.52
- Hehre, Warren J.
- Klamt, Andreas
- Schaefer, Henry F.53
- Schmidt, Michael W.52
- Sherrill, C. David31
- Truhlar, Donald G.43
- Warshel, Arieh2
- Xu, Xin50
- Aspuru-Guzik, Alán28
- Baer, Roi40
-
Bell, Alexis T.3
- Besley, Nicholas A.26
- Chai, Jeng-Da42
- Dreuw, Andreas5
- Dunietz, Barry D.54
- Furlani, Thomas R.55
- Gwaltney, Steven R.56
- Hsu, Chao-Ping49
-
Jung, Yousung32
- Kong, Jing1, 12
- Lambrecht, Daniel S.1
- Liang, WanZhen11
- Ochsenfeld, Christian6
- Rassolov, Vitaly A.57
- Slipchenko, Lyudmila V.9
- Subotnik, Joseph E.19
- Van Voorhis, Troy33
- Herbert, John M.7
-
Krylov, Anna I.2
- Gill, Peter M.W.4
-
Head-Gordon, Martin3
-
1.
Q Chem (United States)
-
2.
University of Southern California
-
3.
University of California, Berkeley
-
4.
Australian National University
-
5.
Heidelberg University
-
6.
Ludwig-Maximilians-Universität München
-
7.
The Ohio State University
-
8.
National Chemical Laboratory
-
9.
Purdue University West Lafayette
-
10.
Technion – Israel Institute of Technology
-
11.
Xiamen University
-
12.
Middle Tennessee State University
-
13.
Pohang University of Science and Technology
-
14.
Rice University
-
15.
University of Utah
-
16.
University of South Florida
-
17.
University of Michigan–Ann Arbor
-
18.
University of Pittsburgh
-
19.
University of Pennsylvania
-
20.
University of California, Riverside
-
21.
Technische Universität Braunschweig
-
22.
Boston University
-
23.
Pittsburgh Supercomputing Center
-
24.
University of the Basque Country
-
25.
University of Canterbury
-
26.
University of Nottingham
-
27.
University of the Pacific
-
28.
Harvard University
-
29.
National Institutes of Health
-
30.
Ghent University
-
31.
Georgia Institute of Technology
-
32.
Korea Advanced Institute of Science and Technology
-
33.
Massachusetts Institute of Technology
-
34.
Bethel University
-
35.
Monmouth University
-
36.
Western Washington University
-
37.
University of Nantes
-
38.
University of Nevada, Las Vegas
-
39.
Fritz Haber Institute of the Max Planck Society
-
40.
Hebrew University of Jerusalem
-
41.
Birla Institute of Technology and Science, Pilani
-
42.
National Taiwan University
-
43.
University of Minnesota
-
44.
Princeton University
-
45.
University of Notre Dame
-
46.
Ohio Northern University
-
47.
King's College London
-
48.
University of Cambridge
-
49.
Institute of Chemistry, Academia Sinica
-
50.
Fudan University
-
51.
California Institute of Technology
-
52.
Iowa State University
-
53.
University of Georgia
-
54.
Kent State University
-
55.
University at Buffalo, State University of New York
-
56.
Mississippi State University
-
57.
University of South Carolina
Abstract
A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr_2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.
Additional Information
© 2016 Informa UK Limited. Received 29 May 2014, Accepted 01 Aug 2014, Published online: 03 Sep 2014.Additional details
- Eprint ID
- 73297
- DOI
- 10.1080/00268976.2014.952696
- Resolver ID
- CaltechAUTHORS:20170106-112949955
- Created
-
2017-01-06Created from EPrint's datestamp field
- Updated
-
2023-03-16Created from EPrint's last_modified field