Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 1988 | public
Book Section - Chapter

Waveform relaxation for concurrent dynamic simulation of distillation columns

Abstract

he need for cost-effective, high-speed computing is essential in many aspects of chemical engineering practice, notably for the simulation of large-scale dynamic systems. The arrival of powerful, highly concurrent message-passing multicomputers potentially offers such economical large-scale computing capability [13,14]. Development of appropriate, efficient algorithms which realize this potential must therefore become an important area of ongoing research and development in chemical engineering. Desired orders-of-magnitude speedup strongly motivates the use of novel algorithmic approaches for large-scale simulation. Initially, we are developing a simplified binary distillation simulation using the waveform relaxation paradigm [1-7]. Waveform relaxation has proven successful for the concurrent simulation of large-scale VLSI circuits [1-3,6,7] and is therefore a promising approach. Rather than an end in itself, however, we expect that results of this research effort will prove relevant to more general concurrent dynamic simulation including rigorous multicomponent distillation and chemical process flowsheeting. We describe the implementation effort (which generalizes the pre-existing CONCISEVLSI circuit simulator, [6]), the simplified distillation model, design issues and current status including a sketch of the underlying waveform relaxation algorithm and its realization. Elsewhere we report further observations as well as speedup results [15].

Additional Information

© 1988 ACM. This research wits supported in part by DOE grant DE-FG03-85ER25009 and DE-AC03-85ER40050. We wish to thank the Caltech Computer Science Submicron Systems Architecture Project for providing access to experimental multicomputers and host systems. Thanks also to L. F. Laroche for many helpful suggestions concerning distillation.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023