Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2003 | public
Book Section - Chapter

Design of FPGA interconnect for multilevel metalization

Abstract

How does multilevel metalization impact the design of FPGA interconnect? The availability of a growing number of metal layers presents the opportunity to use wiring in the third-dimension to reduce switch requirements. Unfortunately, traditional FPGA wiring schemes are not designed to exploit these additional metal layers. We introduce an alternate topology, based on Leighton's Mesh-of-Trees, which carefully exploits hierarchy to allow additional metal layers to support arbitrary device scaling. When wiring layers grow sufficiently fast with aggregate network size (N), our network requires only O(N) area; this is in stark contrast to traditional, Manhattan FPGA routing schemes where switching requirements alone grow superlinearly in N. In practice, we show that, even for the admittedly small designs in the Toronto "FPGA Place and Route Challenge," the Mesh-of-Trees networks require 10% less switches than the standard, Manhattan FPGA routing scheme.

Additional Information

© 2003 ACM. This research was funded in part by the DARPA Moletronics program under grant ONR N00014-01-0651 and by the NSF CAREER program under grant CCR-0133102.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023