Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2003 | Published
Book Section - Chapter Open

Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed

Abstract

The MIT Adaptive Reconnaissance Golay-3 Optical Satellite (ARGOS) is a wide-angle Fizeau interferometer spacecraft testbed. Designing a space-based interferometer, which requires such high tolerances on pointing and alignment for its apertures, presents unique multidisciplinary challenges in the areas of structural dynamics, controls and multi-aperture phasing active optics. In meeting these challenges, emphasis is placed on modularity in spacecraft subsystems and optics as a means of allowing expandability and upgradeability. For the interferometer to function properly, unique methods of coherent wave front sensing are developed and used for error detection in control of the Fast Steering Mirrors (FSMs). The space environment is simulated by floating ARGOS on a frictionless air-bearing that allows it to track fast moving satellites such as the International Space Station (ISS), planets or point stars. A System Identification is performed on ARGOS to determine its dynamic properties and to design optimal controllers for the Attitude Control System (ACS). ACS sensors include an electronic compass with a 2-axis tip-tilt sensor, a viewfinder camera with centroiding algorithm, and a 3-axis rate gyroscope. Nonlinear, quaternion-based control is employed using reaction wheels as the spacecraft's actuators.

Additional Information

© 2003 American Institute of Aeronautics and Astronautics. This research was supported by the NRO Director's Innovation Initiative (DII) and Mide Technology Corporation. Authors would like to thank Alice K. Liu at NASA Goddard Space Flight Center for her initial contribution to the ARGOS attitude control system.

Attached Files

Published - ARGOS_AIAAGNC.pdf

Files

ARGOS_AIAAGNC.pdf
Files (875.8 kB)
Name Size Download all
md5:1ffd1c4b5ecf1d56fa4f552078f04f22
875.8 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023