Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2016 | Published + Submitted
Journal Article Open

Cosmic decoherence: massive fields

Abstract

We study the decoherence of massive fields during inflation based on the Zurek's density matrix approach. With the cubic interaction between inflaton and massive fields, the reduced density matrix for the massive fields can be calculated in the Schrödinger picture which is related to the variance of the non-Gaussian exponent in the wave functional. The decoherence rate is computed in the one-loop form from functional integration. For heavy fields with m≳O(H), quantum fluctuations will easily stay in the quantum state and decoherence is unlikely. While for light fields with mass smaller than O(H), quantum fluctuations are easily decohered within 5 ∼ 10 e-folds after Hubble crossing. Thus heavy fields can play a key role in studying problems involving inflationary quantum information.

Additional Information

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. Received: 08 September 2016; Accepted: 05 October 2016; First Online: 14 October 2016. We thank Hongliang Jiang for his initial collaboration on this topic. We thank Rong-Xin Miao, Elliot Nelson, Bo Ning, Dong-Gang Wang, Zhong-Zhi Xianyu and Yehao Zhou for useful discussions. JL is grateful for PhD assistantships from the departments of physics of Caltech, and warm hosting from department of physics of Hong Kong University of Science and Technology during writing his bachelor's thesis. YW is supported by Grant HKUST4/CRF/13G and ECS 26300316 issued by the Research Grants Council (RGC) of Hong Kong.

Attached Files

Published - art_3A10.1007_2FJHEP10_282016_29072.pdf

Submitted - 1608.07909v2.pdf

Files

1608.07909v2.pdf
Files (1.6 MB)
Name Size Download all
md5:ad08eabdf13da89358301eb1476ada01
878.3 kB Preview Download
md5:b5545222e6b3fcde37796d20aaea7f41
722.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023