Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 29, 2016 | public
Book Section - Chapter

Progress Towards a Synergistically Integrated, Scalable Solar Fuels Generator

Abstract

The development of an artificial photosynthetic system involves obtaining desired functionalities on the nanoscale. A viable blueprint for an artificial photosynthetic system involves two complementary, current-matched and voltage-adding photosystems, in conjunction with two different catalysts: one to oxidize water, and the other to reduce either water and/or carbon dioxide to solar fuels. Recent progress towards a robust, efficient, inexpensive and safe solar-fuels generator provides an example of nanoscale materials-by-design. The light-absorbing semiconductors have been designed and grown as high-aspect-ratio microwires which simultaneously allow minimization of ionic transport pathways, sufficient depth for light absorption in the semiconductor, efficient collection of charge carriers, and high surface areas for catalyst loading. Non-noble-metal catalysts for the redox reactions have been discovered, and methods for protecting the semiconductors against corrosion have been developed.

Additional Information

© 2016 American Chemical Society. Publication Date (Web): August 29, 2016. We gratefully acknowledge support from the National Science Foundation, the Department of Energy Basic Energy Sciences, the Air Force Office of Scientific Research, the Department of Energy through the Joint Center for Artificial Photosynthesis, and the Gordon and Betty Moore Foundation, as acknowledged in the individual publications referenced herein, as well as for partial salary support for NSL that enabled the preparation of this manuscript. We also gratefully acknowledge the talented students and postdoctoral fellows who have made significant contributions to this work, especially including those listed as authors on the publications from our research group and referenced herein. Dr. Kimberly Papadantonakis is also acknowledged for assistance in preparation of this manuscript.

Additional details

Created:
August 20, 2023
Modified:
January 13, 2024