Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 18, 2017 | Accepted Version
Journal Article Open

NMR Hyperpolarization Techniques of Gases

Abstract

Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can be more readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This mini-review covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.

Additional Information

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Issue online: 20 January 2017; Version of record online: 5 December 2016; Accepted manuscript online: 6 October 2016; Manuscript Received: 14 August 2016. The Hyperpolarised Lung Function Imaging Facility (HILF), within the Sir Peter Mansfield Magnetic Imaging Centre (SPMIC) at University of Nottingham, where the M.J.B, SS and IPH undertake research into novel functional MRI techniques, is the beneficiary of grants provided by UK's Medical Research Council (MRC) and Engineering and Physical Sciences Research Council (EPSRC). MGS thanks Burroughs Wellcome Fund Career Award at the Scientific Interface, Human Frontiers Science Program # RGP0050, and Heritage Medical Research Institute for funding. AMC thanks NIH 1F32EB021840 career award. We thank the following award for funding support: NSF CHE-1416268 and CHE-1416432 (EYC, BMG, IVK, KVK), NIH 1R21EB018014 and 1R21EB020323 (EYC and BMG), DOD CDMRP BRP W81XWH-12-1-0159/BC112431 (EYC), PRMRP W81XWH-15-1-0271 and W81XWH-15-1-0272 (EYC, MSR, BMG), ExxonMobil Research and Engineering Company Knowledge Build (EYC). KVK, VVZ and IVK thank the Russian Science Foundation (grant 14–35–00020) for support of the MRI experiments. V.-V.T. acknowledges the Academy of Finland (grant numbers 289649 and 294027) for the financial support. Part of this work has been supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 242710 to L.S.) and the Leibniz Association (WGL; grant SAW-2011-FMP-2 to L.S.).

Attached Files

Accepted Version - chem201603884.pdf

Accepted Version - nihms855956.pdf

Files

nihms855956.pdf
Files (5.5 MB)
Name Size Download all
md5:b500130159e76f4c38fe6f003645de06
2.2 MB Preview Download
md5:9272b7997bc29359635249eb8d776c76
3.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023