Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 7, 1949 | public
Journal Article

A Resonating-Valence-Bond Theory of Metals and Intermetallic Compounds

Pauling, L.

Abstract

The resonating-valence-bond theory of metals discussed in this paper differs from the older theory in making use of all nine stable outer orbitals of the transition metals, for occupancy by unshared electrons and for use in bond formation; the number of valency electrons is consequently considered to be much larger for these metals than has been hitherto accepted. The metallic orbital, an extra orbital necessary for unsynchronized resonance of valence bonds, is considered to be the characteristic structural feature of a metal. It has been found possible to develop a system of metallic radii that permits a detailed discussion to be given of the observed interatomic distances of a metal in terms of its electronic structure. Some peculiar metallic structures can be understood by use of the postulate that the most simple fractional bond orders correspond to the most stable modes of resonance of bonds. The existence of Brillouin zones is compatible with the resonating-valence-bond theory, and the new metallic valencies for metals and alloys with filled-zone properties can be correlated with the electron numbers for important Brillouin polyhedra.

Additional Information

© 1949 Royal Society. (Received 26 July 1948)

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023