Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2005 | public
Journal Article

Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes

Abstract

A vertically aligned nanotube array of titanium oxide was fabricated on the surface of titanium substrate by anodization. The nanotubes were then treated with NaOH solution to make them bioactive, and to induce growth of hydroxyapatite (bone-like calcium phosphate) in a simulated body fluid. It is shown that the presence of TiO_2 nanotubes induces the growth of a "nano-inspired nanostructure", i.e., extremely fine-scale (∼8 nm feature) nanofibers of bioactive sodium titanate structure on the top edge of the ∼15 nm thick nanotube wall. During the subsequent in-vitro immersion in a simulated body fluid, the nano-scale sodium titanate, in turn, induced the nucleation and growth nano-dimensioned hydroxyapatite (HAp) phase. The kinetics of HAp formation is significantly accelerated by the presence of the nanostructures. Such TiO_2 nanotube arrays and associated nanostructures can be useful as a well-adhered bioactive surface layer on Ti implant metals for orthopaedic and dental implants, as well as for photocatalysts and other sensor applications.

Additional Information

© 2005 Elsevier Ltd. Received 15 October 2004; accepted 17 January 2005. The authors wish to thank A.I. Gapin and T. Pisanic at UC San Diego for helpful discussions and assistance in experiments. This work was partly supported by K. Iwama Endowed Chair fund.

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023