Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 20, 2016 | Published
Journal Article Open

Composition of Coronal Mass Ejections

Abstract

We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q_(Fe) > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

Additional Information

© 2016 The American Astronomical Society. Received 2016 January 18; revised 2016 April 27; accepted 2016 May 4; published 2016 July 14. We acknowledge the work of the ACE SWICS team and particularly Paul Shearer for their dedication to producing high-quality compositional data. T.H.Z. acknowledges the hospitality of the staff of the International Space Science Institute where much of this work was performed. This work was supported, in part, by NASA grants NNX13AH66G, NNH13ZDA001N, and NNX11A075G, and the Catholic University of America contract 362496-Sub1.

Attached Files

Published - apj_826_1_10.pdf

Files

apj_826_1_10.pdf
Files (2.9 MB)
Name Size Download all
md5:0a058af48f3b9567219ea838ff0a9764
2.9 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023