Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 26, 2006 | public
Journal Article

Non-equilibrium dynamics and structure of interfacial ice

Abstract

Stimulated by recent experiments [C.-Y. Ruan et al. Science 304, (2004) 81], we have performed molecular dynamics and ab initio structural studies of the laser-induced heating and restructuring processes of nanometer-scale ice on a substrate of chlorine terminated Si(1 1 1). Starting from proton disordered cubic ice configurations the thin film behavior has been characterized at several temperatures up to the melting point. The surface induces order with crystallization in the I_c lattice, but with void amorphous regions. The structure changes on the ultrashort time scale and restructures by heat dissipation depending on the relaxation time and final temperature. Our results show the general behavior observed experimentally, thus providing the nature of forces in the atomic-scale description of interfacial ice.

Additional Information

© 2006 Elsevier B.V. Received 20 April 2006. Available online 13 May 2006.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023