Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2017 | public
Journal Article

A Game-theoretic Framework for Network Coding Based Device-to-Device Communications

Abstract

This paper investigates the delay minimization problem for instantly decodable network coding (IDNC) based deviceto- device (D2D) communications. In D2D enabled systems, users cooperate to recover all their missing packets. The paper proposes a game theoretic framework as a tool for improving the distributed solution by overcoming the need for a central controller or additional signaling in the system. The session is modeled by self-interested players in a non-cooperative potential game. The utility functions are designed so as increasing individual payoff results in a collective behavior achieving both a desirable system performance in a shared network environment and the Nash equilibrium. Three games are developed whose first reduces the completion time, the second the maximum decoding delay and the third the sum decoding delay. The paper, further, improves the formulations by including a punishment policy upon collision occurrence so as to achieve the Nash bargaining solution. Learning algorithms are proposed for systems with complete and incomplete information, and for the imperfect feedback scenario. Numerical results suggest that the proposed game-theoretical formulation provides appreciable performance gain against the conventional point-to-multipoint (PMP), especially for reliable user-to-user channels.

Additional Information

© 2016 IEEE. Manuscript received 29 Sept. 2014; revised 17 Apr. 2016; accepted 16 June 2016. Date of publication 29 June 2016; date of current version 2 Mar. 2017. A part of this paper [1] is published in proc. of IEEE Global Telecommunications Conference (GLOBECOM' 2014), Austin, Texas, USA.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023