Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 10, 2016 | Submitted + Published
Journal Article Open

The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey

Abstract

We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H_2O and NH_3. We further present Atacama Pathfinder Experiment [C ii] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

Additional Information

© 2016. The American Astronomical Society. Received 2015 November 17; accepted 2016 March 6; published 2016 May 10. M.L.S. was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. M.A. acknowledges partial support from FONDECYT through grant 1140099. J.D.V., K.C.L., D.P.M., and J.S.S. acknowledge support from the U.S. National Science Foundation under grant No. AST-1312950. This paper makes use of the following ALMA data: ADS/JAO.ALMA# 2012.1.00844.S, 2012.1.00994.S, 2011.0.00957.S, and 2011.0.00958.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work is based in part on observations made with Herschel under program IDs OT1_jvieira_4 and DDT_mstrande_1. Herschel is a European Space Agency Cornerstone Mission with significant participation by NASA. We also use data from the Atacama Pathfinder Experiment under program IDs E-086. A-0793A-2010, M-085.F-0008-2010, M-087.F-0015-2011, M-091.F-0031-2013, E-094.A-0712A-2014, M-095.F-0028- 2015, E-096.A-0939A-2015. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. We have also used data from VLT/X-Shooter under the ESO project ID E-092.A-0503(A). The SPT is supported by the National Science Foundation through grant PLR-1248097, with partial support through PHY-1125897, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947.

Attached Files

Published - astroj80.pdf

Submitted - 1603.05094v1.pdf

Files

1603.05094v1.pdf
Files (4.1 MB)
Name Size Download all
md5:1068ac3fe92d4b77eee22cdbf103c212
1.6 MB Preview Download
md5:75c416c1e2c95a93289894fb4a6f98b3
2.4 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023