Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2016 | Published + Submitted
Journal Article Open

Serendipitous discovery of the faint solar twin Inti 1

Abstract

Context. Solar twins are increasingly the subject of many studies owing to their wide range of applications from testing stellar evolution models to the calibration of fundamental observables; these stars are also of interest because high precision abundances could be achieved that are key to investigating the chemical anomalies imprinted by planet formation. Furthermore, the advent of photometric surveys with large telescopes motivates the identification of faint solar twins in order to set the zero point of fundamental calibrations. Aims. We intend to perform a detailed line-by-line differential analysis to verify whether 2MASS J23263267-0239363 (designated here as Inti 1) is indeed a solar twin. Methods. We determine the atmospheric parameters and differential abundances using high-resolution (R ≈ 50 000), high signal-to-noise (S/N ≈ 110–240 per pixel) Keck/HIRES spectra for our solar twin candidate, the previously known solar twin HD 45184, and the Sun (using reflected light from the asteroid Vesta). Results. For the bright solar twin HD 45184, we found T_(eff) = 5864 ± 9 K, log g = 4.45 ± 0.03 dex, v_t = 1.11 ± 0.02 km s^(-1), and [Fe/H] = 0.04 ± 0.01 dex, which are in good agreement with previous works. Our abundances are in excellent agreement with a recent high-precision work, with an element-to-element scatter of only 0.01 dex. The star Inti 1 has atmospheric parameters T_(eff) = 5837 ± 11 K, log g = 4.42 ± 0.03 dex, v_t = 1.04 ± 0.02 km s^(-1), and [Fe/H] = 0.07 ± 0.01 dex that are higher than solar. The age and mass of the solar twin HD 45184 (3 Gyr and 1.05 M⊙) and the faint solar twin Inti 1 (4 Gyr and 1.04 M⊙) were estimated using isochrones. The differential analysis shows that HD 45184 presents an abundance pattern that is similar to typical nearby solar twins; this means this star has an enhanced refractory relative to volatile elements, while Inti 1 has an abundance pattern closer to solar, albeit somewhat enhanced in refractories. The abundance pattern of HD 45184 and Inti 1 could be reproduced by adding ≈3.5 M⊕ and ≈1.5 M⊕ of Earth-like material to the convective zone of the Sun. Conclusions. The star Inti 1 is a faint solar twin, therefore, it could be used to calibrate the zero points of different photometric systems. The distant solar twin Inti 1 has an abundance pattern similar to the Sun with only a minor enhancement in the refractory elements. It would be important to analyze other distant solar twins to verify whether they share the Sun's abundance pattern or if they are enhanced in refractories, as is the case in the majority of nearby solar twins.

Additional Information

© 2016 ESO. Article published by EDP Sciences. Received 29 September 2015; Accepted 26 February 2016; Published online 14 April 2016. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. J.Y.G. acknowledges support by CNPq. J.M. thanks support from FAPESP (2012/24392-2). We are grateful to the many people who have worked to make the Keck Telescope and its instruments a reality and to operate and maintain the Keck Observatory. The authors wish to extend special thanks to those of Hawaian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented herein would have been possible.

Attached Files

Published - aa27477-15.pdf

Submitted - 1603.01245v1.pdf

Files

1603.01245v1.pdf
Files (1.5 MB)
Name Size Download all
md5:181de6447addebfbca777b6d05a7bc48
742.6 kB Preview Download
md5:68ce0b5e0f117f0d4922599ec9eb3232
737.2 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 19, 2023