Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1996 | public
Journal Article

On strained flames with hypergolic reactants: The H_2/NO/F_2 system in high-speed, supersonic and subsonic mixing-layer combustion

Abstract

We report on a numerical investigation on the dynamics and structure of strained, non-premixed and premixed, H_2/NO/F_2 flames. This is an important, hypergolic reacting system that has been used in high- power chemical-laser systems and, presently, relied upon in experimental studies of high-speed, supersonic and subsonic, turbulent shear-layer mixing and combustion. The study included a detailed description of the chemical kinetics and molecular transport for the H_2 /NO/F_2 system and was conducted for a wide range of reactant concentrations and inert diluents, with flow/chemical parameters chosen to correspond to specific chemically reacting, supersonic mixing-layer experiments. Both non-premixed and premixed flames were studied using opposed-jet flow configurations. The results confirmed the experimental conclusion that, even at low reactant concentrations, the H_2/NO/F_2 system can sustain high Damköhler number chemical activity at high strain rates with room-temperature free streams. A comparison between the results of the present numerical simulations and the experimental chemically reacting mixing-layer studies, however, indicates that the predominant fraction of product formation in high-speed, turbulent, mixing layers must take place in a mode in which the reactants are in premixed, rather than in non-premixed, strained diffusion flames.

Additional Information

© 1996 Elsevier. This work was supported by the Fred O'Green Assistant Professorship in Engineering at the University of Southern California and by the Air Force Office of Scientific Research, Grant No. F49620-94-1-0353, at Caltech.

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023