Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1998 | Published
Journal Article Open

Segmentation of the vertebrate hindbrain: a time-lapse analysis

Abstract

The chick hindbrain starts from a simple and relatively uniform axis and becomes segmented into repeating units, called rhombomeres. The rhombomeres become sites of cell differentiation into specific neurons and the location from which neural crest cells emerge from the neural tube to form the peripheral nervous system, which has only been analyzed at distinct time points due to the lack of a method to watch the neural tube as it is shaped into segments. We have developed a whole-embryo explant culture system in order to study cell and tissue movements with time-lapse video microscopy. Quantitative analyses of the neural tube during its segmentation show that not all rhombomeres are shaped by the same mechanism. In the rostral hindbrain, or first three segments, rhombomeres are shaped by an expansion in the lateral width of the mid-rhombomere; either a smaller expansion or a constriction takes place at the rhombomere boundaries. In the caudal hindbrain, the rhombomere boundaries constrict more than the mid-rhombomere lateral widths increase or decrease, leading to the shaping of the segments. Throughout the segmentation process the rostrocaudal lengths of all rhombomeres remain nearly constant indicating that shape changes are influenced by lateral expansions and constrictions of the neural tube.

Additional Information

© 1998 UBC Press.

Attached Files

Published - ft385.pdf

Files

ft385.pdf
Files (353.4 kB)
Name Size Download all
md5:f3bdffec80db3acf53b901ce602c669a
353.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023