Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 16, 2016 | Supplemental Material
Journal Article Open

Dioxygen Reduction by a Pd(0)–Hydroquinone Diphosphine Complex

Abstract

A novel p-terphenyl diphosphine ligand was synthesized with a noninnocent hydroquinone moiety as the central arene (1-H). Pseudo-tetrahedral 4-coordinate Ni^0 and Pd^0–quinone (2 and 3, respectively) complexes proved accessible by metalating 1-H with the corresponding M(OAc)_2 precursors. O_2 does not react with the Pd^0–quinone species (3) and protonation occurs at the quinone moiety indicating that the coordinated oxidized quinonoid moiety prevents reactivity at the metal. A 2-coordinate Pd^0–hydroquinone complex (4-H) was prepared using a one-pot metalation with Pd^(II) followed by reduction. The reduced quinonoid moiety in 4-H shows metal-coupled reactivity with small molecules. 4-H was capable of reducing a variety of substrates including dioxygen, nitric oxide, nitrous oxide, 1-azido adamantane, trimethylamine n-oxide, and 1,4-benzoquinone quantitatively producing 3 as the Pd-containing reaction product. Mechanistic investigations of dioxygen reduction revealed that the reaction proceeds through a η^2-peroxo intermediate (Int1) at low temperatures followed by subsequent ligand oxidation at higher temperatures in a reaction that consumed half an equivalent of O_2 and produced water as a final oxygenic byproduct. Control compounds with methyl protected phenolic moieties (4-Me), displaying a Ag^I center incapable of O_2 binding (7-H) or a cationic Pd–H motif (6-H) allowed for the independent examination of potential reaction pathways. The reaction of 4-Me with dioxygen at low temperature produces a species (8-Me) analogous to Int1 demonstrating that initial dioxygen activation is an inner sphere Pd-based process where the hydroquinone moiety only subsequently participates in the reduction of O_2, at higher temperatures, by H^+/e^– transfers.

Additional Information

© 2016 American Chemical Society. Received: December 10, 2015; Publication Date (Web): March 7, 2016. We thank Lawrence M. Henling and Mike Takase for crystallographic assistance. We thank Caltech and NSF (CHE-1151918) for funding. T.A. is grateful for Sloan, Cottrell, and Dreyfus fellowships. The Bruker KAPPA APEXII X-ray diffractometer was purchased via an NSF CRIF:MU award to Caltech, CHE0639094. The authors declare no competing financial interest.

Attached Files

Supplemental Material - ja5b12928_si_001.txt

Supplemental Material - ja5b12928_si_002.pdf

Files

ja5b12928_si_001.txt
Files (28.2 MB)
Name Size Download all
md5:05d7114c4aff9330e76d401d19927a78
26.8 MB Preview Download
md5:e5997e1221e56a7466549a626ed75a89
1.4 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023