Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 17, 2003 | Published
Journal Article Open

Assembly of α4β2 Nicotinic Acetylcholine Receptors Assessed with Functional Fluorescently Labeled Subunits: Effects of Localization, Trafficking, and Nicotine-Induced Upregulation in Clonal Mammalian Cells and in Cultured Midbrain Neurons

Abstract

Fura-2 recording of Ca^(2+) influx was used to show that incubation in 1 μM nicotine (2-6 d) upregulates several pharmacological components of acetylcholine (ACh) responses in ventral midbrain cultures, including a MLA-resistant, DHβE-sensitive component that presumably corresponds to α4β2 receptors. To study changes in α4β2 receptor levels and assembly during this upregulation, we incorporated yellow and cyan fluorescent proteins (YFPs and CFPs) into the α4 or β2 M3-M4 intracellular loops, and these subunits were coexpressed in human embryonic kidney (HEK) 293T cells and cultured ventral midbrain neurons. The fluorescent receptors resembled wild-type receptors in maximal responses to ACh, dose-response relations, ACh-induced Ca^(2+) influx, and somatic and dendritic distribution. Transfected midbrain neurons that were exposed to nicotine (1 d) displayed greater levels of fluorescent α4 and β2 nicotinic ACh receptor (nAChR) subunits. As expected from the hetero-multimeric nature of α4β2 receptors, coexpression of the α4-YFP and β2-CFP subunits resulted in robust fluorescence resonance energy transfer (FRET), with a FRET efficiency of 22%. In midbrain neurons, dendritic α4β2 nAChRs displayed greater FRET than receptors inside the soma, and in HEK293T cells, a similar increase was noted for receptors that were translocated to the surface during PKC stimulation. When cultured transfected midbrain neurons were incubated in 1 μMnicotine, there was increased FRET in the cell body, denoting increased assembly of α4β2 receptors. Thus, changes in α4β2 receptor assembly play a role in the regulation of α4β2 levels and responses in both clonal cell lines and midbrain neurons, and the regulation may result from Ca^(2+)-stimulated pathways.

Additional Information

© 2003 Society for Neuroscience. For the first six months after publication SfN's license will be exclusive. Beginning six months after publication the Work will be made freely available to the public on SfN's website to copy, distribute, or display under a Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/). Received Aug. 13, 2003; revised Oct. 14, 2003; accepted Oct. 16, 2003. This work was supported by National Institutes of Health Grants NS11756 and HD37105 and the California Tobacco-Related Disease Research Program (TRDRP). R.N. was supported by a postdoctoral fellowship from the TRDRP (10FT-0174) and the Elizabeth Ross Fellowship. We thank Bruce Cohen and Julian Revie for critical evaluation of this manuscript, Eric Slimko for providing the GluClβ-YFP GluClα-CFP cDNAs, Donghong Ju, Alexa Mundy, Matthew Abramian, and Kai Sung for technical help, Qi Huang for writing some of the data analysis programs, and James Fisher for performing several three-cube FRET experiments.

Attached Files

Published - 11554.full.pdf

Files

11554.full.pdf
Files (926.2 kB)
Name Size Download all
md5:4713940e9421633b8287053e2ab6805c
926.2 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023