Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1972 | public
Journal Article

Melting of Gabbro (Quartz Eclogite) with Excess Water to 35 Kilobars, with Geological Applications

Abstract

Crystalline, fine-grained, high-alumina olivine tholeiite with excess water was reacted in sealed platinum capsules in piston-cylinder apparatus between 10 and 35 kbar pressure. Runs were planned to determine the curve for the beginning of melting, but combining these with published results at lower pressures permitted delineation of the major features of the phase diagram through the melting interval. Amphibolite melts below 10 kbar; quartz eclogite melts above 25 kbar; between them is a melting interval dominated by the breakdown of amphibole and formation of garnet and jadeitic pyroxene. The results introduce two features for geological applications. The solidus changes slope at about 13.5 kbar; the amphibole maximum-stability curve changes slope in the interval 12.5-15 kbar to such an extent that the amphibole stability field is more restricted at high pressures than anticipated from previous studies. With free water, eclogite is Stable only at depths greater than about 70 km, and amphibolite is Stable in the deep crust. Amphibolite crust thickened in the depth range 40-60 km with aqueous pore fluid melts, forming a liquid enriched in silica and albitic plagioclase; this is a potential source of water-undersaturated liquids for batholiths. The upper boundary of the mantle low-velocity zone could be the boundary between rocks with interstitial amphibole and those with interstitial hydrous silicate liquid. In oceanic crust forming the upper part of a subducted lithosphere slab, it appears that most hydrous minerals dehydrate or melt before they reach 100 km depth. If so, dehydration of subducted oceanic crust does not supply water for andesitic magmatism beyond the arc-trench gap, nor contribute to the chemical variations recorded in andesites across arc complexes (K_2O, K/Rb).

Additional Information

© 1972 University of Chicago Press. Manuscript received April 14, 1972; revised June 9, 1972. For support of this research we thank the National Science Foundation, grant GA-29426, and the Advanced Research Projects Agency, grant DAHC-15-67-0020. We thank F.C.W. Dodge for supplying analyzed amphibole samples, and R.B. Merrill for comments on the manuscript.

Additional details

Created:
August 23, 2023
Modified:
October 17, 2023