Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 1, 2001 | public
Journal Article

New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins

Abstract

We produced eight anti-huntingtin (Htt) monoclonal antibodies (mAbs), several of which have novel binding patterns. Peptide array epitope mapping shows that mAbs MW1–6 specifically bind the polyQ domain of Htt exon 1. On Western blots of extracts from mutant Htt knock-in mouse brain and Huntington's disease lymphoblastoma cell lines, MW1-5 all strongly prefer to bind to the expanded polyQ repeat form of Htt, displaying no detectable binding to normal Htt. These results suggest that the polyQ domain can assume different conformations that are distinguishable by mAbs. This idea is supported by immunohistochemistry with wild type (WT) and mutant Htt transgenic mouse (R6) brains. Despite sharing the same epitope and binding preferences on Western blots, MW1–5 display distinct staining patterns. MW1 shows punctate cytoplasmic and neuropil staining, while MW2–5 strongly stain the neuronal Golgi complex. MW6, in contrast, stains neuronal somas and neuropil. In addition, despite their preference for mutant Htt on blots, none of these mAbs show enhanced staining of R6 brains over WT, and show no binding of the Htt-containing nuclear inclusions in R6 brains. This suggests that in its various subcellular locations, the polyQ domain of Htt either takes on different conformations and/or is differentially occluded by Htt binding proteins. In contrast to MW1–6, MW7, and 8 can differentiate transgenic from WT mice by staining nuclear inclusions in R6/2 brain; MW8 displays no detectable staining in WT brain and stains only inclusions in R6/2 brain. Epitope mapping reveals that MW7 and 8 specifically bind the polyP domains and amino acids 83-90, respectively. As with MW1-6, the epitopes for MW7 and 8 are differentially available in the various subcellular compartments where Htt is found.

Additional Information

© 2001 Elsevier Science Inc. Available online 19 November 2001. We thank James Burke, Marie-Francoise Chesselet, Vivian Hook, George Jackson, Parsa Kazemi-Esfarjani, Alex Kanzantsev, Ali Khoshnan, George Lawless, Marcy MacDonald, Hemachandro Reddy, Allan Sharp, Gabriele Shilling, Peter Snow, Leslie Thompson, Peter Thumfort, Jonathon Wood, and Scott Zeitlin for generously providing antibodies, cell lines, mouse tissues, and DNA constructs. Peter Snow expressed proteins and Peter Thumfort generously provided the peptide arrays and advice on epitope mapping. Chien-Ping Ko and David Anderson provided special camera and microscope access. Ethan Signer was an important source of information and facilitated obtaining reagents. We also thank Melanie Bennett, Joanna Jankowsky, and Ali Khoshnan for their helpful comments on an earlier version of this paper and Doreen McDowell for administrative assistance. This work is supported by the Cure HD Initiative of the Hereditary Disease Foundation.

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023