Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 15, 2016 | Published + Submitted
Journal Article Open

Gravitational waveforms for neutron star binaries from binary black hole simulations

Abstract

Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ⋋.

Additional Information

© 2016 American Physical Society. Received 22 September 2015; revised manuscript received 26 November 2015; published 24 February 2016. We thank Harald Pfeiffer and Sanjay Reddy for helpful discussions. This work was supported in part by the Sherman Fairchild Foundation and NSF Grants No. PHY-1404569 and No. AST-1333520 at Caltech, NSF Grant No. AST-1333142 at Syracuse University, the Sherman Fairchild Foundation and NSF Grants No. PHY-1306125 and No. AST-1333129 at Cornell University and by NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060. Computations were performed on the Zwicky cluster at Caltech, which is supported by the Sherman Fairchild Foundation and by NSF Grant No. PHY-0960291; on the NSF XSEDE network under Grant No. TG-PHY990007N; on the NSF/NCSA Blue Waters at the University of Illinois with allocation jr6 under NSF PRAC Grant No. ACI-1440083; and on the GPC supercomputer at the SciNet HPC Consortium [60]; SciNet is funded by the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)–Research Excellence; and the University of Toronto.

Attached Files

Published - PhysRevD.93.044064.pdf

Submitted - 1509.05782v2.pdf

Files

1509.05782v2.pdf
Files (1.8 MB)
Name Size Download all
md5:28b279bb6f5e04d12f03a46df9ac1b52
1.1 MB Preview Download
md5:4d48842ca370dde86e67cba859d30797
755.8 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 17, 2023