Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 11, 2016 | Submitted
Book Section - Chapter Open

Toward physical realizations of thermodynamic resource theories

Abstract

Conventional statistical mechanics describes large systems and averages over many particles or over many trials. But work, heat, and entropy impact the small scales that experimentalists can increasingly control, e.g., in single-molecule experiments. The statistical mechanics of small scales has been quantified with two toolkits developed in quantum information theory: resource theories and one-shot information theory. The field has boomed recently, but the theorems amassed have hardly impacted experiments. Can thermodynamic resource theories be realized experimentally? Via what steps can we shift the theory toward physical realizations? Should we care? I present eleven opportunities in physically realizing thermodynamic resource theories.

Additional Information

© 2017 Springer International Publishing Switzerland. I am grateful to Fernando Brandão, Lídia del Rio, Ian Durham, Manuel Endres, Tobias Fritz, Alexey Gorshkov, Christopher Jarzynski, David Jennings, Matteo Lostaglio, Evgeny Mozgunov, Varun Narasimhachar, Nelly Ng, John Preskill, Renato Renner, Dean Rickles, Jim Slinkman, Stephanie Wehner, and Mischa Woods for conversations and feedback. This research was supported by an IQIM Fellowship, NSF grant PHY-0803371, and a Virginia Gilloon Fellowship. The Institute for Quantum Information and Matter (IQIM) is an NSF Physics Frontiers Center supported by the Gordon and Betty Moore Foundation. Stephanie Wehner and QuTech offered hospitality at TU Delft during the preparation of this manuscript. Finally, I thank that seminar participant for galvanizing this exploration.

Attached Files

Submitted - 1509.03873v1.pdf

Files

1509.03873v1.pdf
Files (375.3 kB)
Name Size Download all
md5:e482ad3a41846fdf1bdda95f25992004
375.3 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024