Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 28, 2016 | Published + Supplemental Material
Journal Article Open

Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction

Abstract

Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Herein, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm^(−2), and evaluated the resulting nanoparticulate films for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm^(−2) current densities per geometric area at overpotentials of ∼0.35–0.5 V.

Additional Information

© 2015 The Royal Society of Chemistry. Received 22nd September 2015; Accepted 25th November 2015; First published online 27 Nov 2015. This article is part of themed collection: Water splitting and photocatalysis. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. We would like to acknowledge much assistance in BET measurements by Kurt M. Van Allsburg.

Attached Files

Published - c5ta07586f.pdf

Supplemental Material - c5ta07586f1_si.pdf

Files

c5ta07586f.pdf
Files (3.0 MB)
Name Size Download all
md5:8030c706810b7a82f6af349b14513e71
736.0 kB Preview Download
md5:ec2a59bd034a1635529fb23cf8e5119a
2.3 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 25, 2023