Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 1999 | Published
Journal Article Open

Synthesis of Porous Inorganic Membranes

Abstract

Here we will attempt a brief overview of recent synthetic efforts for micropore and lower-end mesopore membranes. We will not address the very important classes of nonporous membranes, such as dense metals and solid electrolytes with applications in H_2 and O_2 separations, or meso- and macroporous membranes, which find applications in food processing and water treatment. Microporous materials provide high permselectivities for molecules encountered in the chemical-processing industry but suffer from low intrinsic permeabilities. Therefore, in order to bring microporous membrane materials to commercial applications, functional composites with small effective thicknesses (in the micron or submicron range) must be developed. For example, to achieve economical membrane-reactor sizes, fluxes as high as 0.1 mol/(m^2 s) are desirable. Approaches to microporous membranes include modification of mesoporous membranes by sol-gel and chemical-vapor-deposition (CVD) techniques, carbonization of polymers to form molecular-sieve carbon, and polycrystalline-film growth of zeolites and other molecular sieves.

Additional Information

© 1999 Materials Research Society.

Attached Files

Published - S0883769400051885a.pdf

Files

S0883769400051885a.pdf
Files (4.2 MB)
Name Size Download all
md5:dbb9c9187905490f91e06a03f81ec58e
4.2 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023