Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2015 | public
Journal Article

A Perspective on the MIMO Wiretap Channel

Abstract

A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve's presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input-multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

Additional Information

© 2015 IEEE. Manuscript received January 26, 2015; revised May 23, 2015 and August 7, 2015; accepted August 10, 2015. Date of publication September 11, 2015; date of current version September 16, 2015. The work of B. Hassibi was supported in part by the National Science Foundation under Grants CNS-0932428, CCF-1018927, CCF-1423663, and CCF-1409204; by a grant from Qualcomm Inc.; by NASA's Jet Propulsion Laboratory through the President and Directors Fund; by King Abdulaziz University; and by the King Abdullah University of Science and Technology.

Additional details

Created:
August 22, 2023
Modified:
March 5, 2024