Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2015 | public
Book Section - Chapter

Phase retrieval with masks using convex optimization

Abstract

Signal recovery from the magnitude of the Fourier transform, or equivalently, from the autocorrelation, is a classical problem known as phase retrieval. Due to the absence of phase information, some form of additional information is required in order to be able to uniquely identify the underlying signal. In this work, we consider the problem of phase retrieval using masks. Due to our interest in developing robust algorithms with theoretical guarantees, we explore a convex optimization-based framework. In this work, we show that two specific masks (each mask provides 2n Fourier magnitude measurements) or five specific masks (each mask provides n Fourier magnitude measurements) are sufficient for a convex relaxation of the phase retrieval problem to provably recover almost all signals (up to global phase). We also show that the recovery is stable in the presence of measurement noise. This is a significant improvement over the existing results, which require O(log^2 n) random masks (each mask provides n Fourier magnitude measurements) in order to guarantee unique recovery (up to global phase). Numerical experiments complement our theoretical analysis and show interesting trends, which we hope to explain in a future publication.

Additional Information

© 2015 IEEE. This work was supported in part by the National Science Foundation under grants CCF-0729203, CNS-0932428 and CCF-1018927, by the Office of Naval Research under the MURI grant N00014-08-1-0747, and by Caltech's Lee Center for Advanced Networking.

Additional details

Created:
September 15, 2023
Modified:
March 5, 2024