Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1, 2015 | Published + Supplemental Material
Journal Article Open

A Monolithically Integrated, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting System Based on Active, Stable Earth-Abundant Electrocatalysts in Conjunction with Tandem III-V Light Absorbers Protected by Amorphous TiO_2 Films

Abstract

A monolithically integrated device consisting of a tandem-junction GaAs/InGaP photoanode coated by an amorphous TiO_2 stabilization layer, in conjunction with Ni-based, earth-abundant active electrocatalysts for the hydrogen-evolution and oxygen-evolution reactions, was used to effect unassisted, solar-driven water splitting in 1.0 M KOH(aq). When connected to a Ni-Mo-coated counterelectrode in a two-electrode cell configuration, the TiO_2-protected III-V tandem device exhibited a solar-to-hydrogen conversion efficiency, η_(STH), of 10.5% under 1 sun illumination, with stable performance for > 40 h of continuous operation at an efficiency of η_(STH) >10%. The protected tandem device also formed the basis for a monolithically integrated, intrinsically safe solar-hydrogen prototype system (1 cm^2) driven by a NiMo/GaAs/InGaP/TiO_2/Ni structure. The intrinsically safe system exhibited a hydrogen production rate of 0.81 μL s^(-1) and a solar-to-hydrogen conversion efficiency of 8.6% under 1 sun illumination in 1.0 M KOH(aq), with minimal product gas crossover while allowing for beneficial collection of separate streams of H_2(g) and O_2(g).

Additional Information

© 2015 Royal Society of Chemistry. Received 09 Jun 2015, Accepted 17 Aug 2015, First published online 18 Aug 2015. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. This work was additionally supported by the Gordon and Betty Moore Foundation under Award No. GBMF1225.

Attached Files

Published - c5ee01786f.pdf

Supplemental Material - c5ee01786f1.pdf

Supplemental Material - c5ee01786f2.mp4

Files

c5ee01786f.pdf
Files (118.7 MB)
Name Size Download all
md5:f92dbb7f84adda9ffe975f8652432ab3
115.5 MB Download
md5:7b24b613240297767d7946b9e6ce6b74
2.2 MB Preview Download
md5:37eb1ad4fae37d939a6b24f8ddee5294
1.1 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023