Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2018 | Published + Submitted
Journal Article Open

Maximum one-shot dissipated work from Rényi divergences

Abstract

Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

Additional Information

© 2018 American Physical Society. Received 19 July 2017; published 25 May 2018. This work was supported by a Virginia Gilloon Fellowship; an IQIM Fellowship; a Barbara Groce Fellowship; a KITP Graduate Fellowship; NSF Grants No. PHY-0803371, No. PHY-1125565, and No. PHY-1125915; the Foundational Questions Institute (FQXi) Large Grants for "Time and the Structure of Quantum Theory" and "the Physics of the Observer" (FQXi-RFP-1614) the EPSRC; the John Templeton Foundation Grant 54914; the Leverhulme Trust; the Oxford Martin School; the NRF (Singapore); and the MoE (Singapore). The Institute for Quantum Information and Matter (IQIM) is an NSF Physics Frontiers Center with support from the Gordon and Betty Moore Foundation (GBMF-2644). V.V. and O.D. acknowledge funding from the EU Collaborative Project TherMiQ (Grant Agreement No. 618074). N.Y.H. thanks Ning Bao for conversations about high-energy scenarios. We thank all our referees for feedback, which enhanced this article.

Attached Files

Published - PhysRevE.97.052135.pdf

Submitted - 1505.06217v1.pdf

Files

PhysRevE.97.052135.pdf
Files (342.1 kB)
Name Size Download all
md5:a2e4feb3d675f7ea0e1715d7ef64db02
192.2 kB Preview Download
md5:cfcec59b814a8dcde1e1215cdbd244e2
149.9 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023