Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 25, 2015 | Submitted + Supplemental Material
Journal Article Open

Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission

Abstract

The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C II emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5–6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

Additional Information

© 2015 Macmillan Publishers Limited. Received 20 November 2014; accepted 23 April 2015. Support for this work was provided by NASA through an award issued by JPL/Caltech. We thank the ALMA staff for facilitating the observations and aiding in the calibration and reduction process. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work is based in part on observations made with the Spitzer Space Telescope and the W.M. Keck Observatory, along with archival data from the NASA/ESA Hubble Space Telescope, the Subaru Telescope, the Canada-France-Hawaii-Telescope and the ESO Vista telescope obtained from the NASA/IPAC Infrared Science Archive. V.S. acknowledges funding by the European Union's Seventh Framework programme under grant agreement 337595 (ERC Starting Grant, 'CoSMass'). Contributions: P.L.C. proposed and carried out the observations, conducted the analysis in this paper, and authored the majority of the text. C.C., G.J. and K.S. carried out the reduction and direct analysis of the ALMA data. C.M.C. consulted on the spectral energy distribution fitting and interpretation of the data, and also conducted a blind test of the FIR luminosity, [C II] line luminosity, and β measurements, along with testing for sample selection effects. D.R. conducted the spectral line analysis and carried out an independent blind check of the ALMA data reduction. O.I. carried out the spectral energy distribution fitting and consulted on their interpretation. C.M.C., A.K., O.L., S.L., N.S., V.S. and L.Y. contributed to the overall interpretation of the results and various aspects of the analysis. The authors declare no competing financial interests. This paper makes use of ALMA data: ADS/JAO.ALMA#2012.1.00523.S. ALMA.

Attached Files

Submitted - 1503.07596.pdf

Supplemental Material - nature14500-sf1.jpg

Supplemental Material - nature14500-sf2.jpg

Supplemental Material - nature14500-sf3.jpg

Supplemental Material - nature14500-sf4.jpg

Supplemental Material - nature14500-st1.jpg

Supplemental Material - nature14500-st2.jpg

Supplemental Material - nature14500-st3.jpg

Supplemental Material - nature14500-st4.jpg

Supplemental Material - nature14500-st5.jpg

Files

1503.07596.pdf
Files (3.2 MB)
Name Size Download all
md5:140553c34f433581172d44c9fa69ffb9
2.1 MB Preview Download
md5:bc30e78c8da13549a3a97024e824467d
53.7 kB Preview Download
md5:46e3cb28ad6f2e85a6ec828fabdec8c0
141.0 kB Preview Download
md5:93ec47175b2c0127eac7a3036abc8125
125.9 kB Preview Download
md5:84ea3f90c907e6c356eea07971f10fea
170.5 kB Preview Download
md5:4a76d02ef392907d5ab50e1db54eff0b
182.8 kB Preview Download
md5:970d4ce37b589cac82bdf6e59eee420a
82.5 kB Preview Download
md5:2d63ead0cc2b0b97d07f6538f6e80344
126.8 kB Preview Download
md5:f301acd8419aeecf4bfee818bfa14144
98.9 kB Preview Download
md5:db84969c150e3a7b969191f364653650
132.8 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023