Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 25, 2006 | Supplemental Material
Journal Article Open

Long γ-ray bursts and core-collapse supernovae have different environments

Abstract

When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way.

Additional Information

© 2006 Nature Publishing Group. Received 22 August 2005; Accepted 5 April 2006; Published online 10 May 2006. Support for this research was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. Observations analysed in this work were taken by the NASA/ESA Hubble Space Telescope under programmes: 7785, 7863, 7966, 8189, 8588, 9074 and 9405 (Principal Investigator, A.S.F.); 7964, 8688, 9180 and 10135 (PI, S. R. Kulkarni); 8640 (PI, S.T.H.). We thank N. Panagia, N. Walborn and A. Soderberg for conversations; A. Filippenko and collaborators for early-time images of GRB 980326; and J. Bloom and collaborators for making public their early observations of GRB 020322.

Attached Files

Supplemental Material - nature04787-s1.pdf

Files

nature04787-s1.pdf
Files (427.1 kB)
Name Size Download all
md5:ffc94748780c91827216f0834fcaa198
427.1 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023