Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 6, 2007 | public
Journal Article

Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system

Abstract

Cavity quantum electrodynamics, the study of coherent quantum interactions between the electromagnetic field and matter inside a resonator, has received attention as both a test bed for ideas in quantum mechanics and a building block for applications in the field of quantum information processing. The canonical experimental system studied in the optical domain is a single alkali atom coupled to a high-finesse Fabry–Perot cavity. Progress made in this system has recently been complemented by research involving trapped ions, chip-based microtoroid cavities, integrated microcavity-atom-chips, nanocrystalline quantum dots coupled to microsphere cavities, and semiconductor quantum dots embedded in micropillars, photonic crystals and microdisks. The last system has been of particular interest owing to its relative simplicity and scalability. Here we use a fibre taper waveguide to perform direct optical spectroscopy of a system consisting of a quantum dot embedded in a microdisk. In contrast to earlier work with semiconductor systems, which has focused on photoluminescence measurements, we excite the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fibre coupling method also allows us to examine the system's steady-state nonlinear properties, where we see a saturation of the cavity–quantum dot response for less than one intracavity photon. The excitation of the cavity–quantum dot system through a fibre optic waveguide is central to applications such as high-efficiency single photon sources, and to more fundamental studies of the quantum character of the system.

Additional Information

© 2007 Nature Publishing Group. Received 23 July; accepted 11 September 2007. We thank S. Krishna and A. Stintz for providing quantum dot material growth. This work was supported by the Charles L. Powell Foundation and the Center for the Physics of Information at Caltech. Author Contributions: Both K.S. and O.P. contributed to all aspects of this work.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023