Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2015 | Published
Book Section - Chapter Open

Spatial mixing and the connective constant: Optimal bounds

Abstract

We study the problem of deterministic approximate counting of matchings and independent sets in graphs of bounded connective constant. More generally, we consider the problem of evaluating the partition functions of the monomer-dimer model (which is defined as a weighted sum over all matchings where each matching is given a weight γ^(|V| –2|M|) in terms of a fixed parameter γ called the monomer activity) and the hard core model (which is defined as a weighted sum over all independent sets where an independent set I is given a weight γ^(|I|) in terms of a fixed parameter γ called the vertex activity). The connective constant is a natural measure of the average degree of a graph which has been studied extensively in combinatorics and mathematical physics, and can be bounded by a constant even for certain unbounded degree graphs such as those sampled from the sparse Erdös-Rényi model (n, d/n). Our main technical contribution is to prove the best possible rates of decay of correlations in the natural probability distributions induced by both the hard core model and the monomer-dimer model in graphs with a given bound on the connective constant. These results on decay of correlations are obtained using a new framework based on the so-called message approach that has been extensively used recently to prove such results for bounded degree graphs. We then use these optimal decay of correlations results to obtain FPTASs for the two problems on graphs of bounded connective constant. In particular, for the monomer-dimer model, we give a deterministic FPTAS for the partition function on all graphs of bounded connective constant for any given value of the monomer activity. The best previously known deterministic algorithm was due to Bayati, Gamarnik, Katz, Nair and Tetali [STOC 2007], and gave the same runtime guarantees as our results but only for the case of bounded degree graphs. For the hard core model, we give an FPTAS for graphs of connective constant Δ whenever the vertex activity λ < λ_c(Δ), where λ_c(Δ):= Δ^Δ/(Δ - 1)^(Δ + 1) ; this result is optimal in the sense that an FPTAS for any λ > λ_c(Δ) would imply that NP=RP [Sly, FOCS 2010]. The previous best known result in this direction was a recent paper by a subset of the current authors [FOCS 2013], where the result was established under the suboptimal condition λ < λc(Δ + 1). Our techniques also allow us to improve upon known bounds for decay of correlations for the hard core model on various regular lattices, including those obtained by Restrepo, Shin, Vigoda and Tetali [FOCS 11] for the special case of ℤ^2 using sophisticated numerically intensive methods tailored to that special case.

Additional Information

© 2015 SIAM. This work was done while this author was a graduate student at UC Berkeley and was supported by NSF grant CCF-1016896. Supported in part by NSF grant CCF-1016896. Part of this work was done while this author was visiting the Simons Institute for the Theory of Computing. Part of this work was done while this author was visiting UC Berkeley.

Attached Files

Published - p1549-sinclair.pdf

Files

p1549-sinclair.pdf
Files (254.4 kB)
Name Size Download all
md5:8af5668de87aba794bf36566ba7ed878
254.4 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023