Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2001 | Published
Book Section - Chapter Open

Cayley codes for multi-antenna differential modulation

Abstract

Multiple antenna differential modulation using unitary matrices requires no channel knowledge at the receiver, and so is ideal for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Although this basic principle is well understood, it is not known how to generate good-performing constellations of unitary matrices, for any number of transmit and receive antennas and especially at high rates. We propose a class of Cayley codes that works with any number of antennas, and allows for polynomial-time near-maximum-likelihood decoding based on either successive nulling/cancelling or sphere decoding. The codes use the Cayley transform, which maps the highly nonlinear Stiefel manifold of unitary matrices to the linear space of skew-Hermitian matrices. This leads to a simple linear constellation structure in the Cayley transform domain and to an information-theoretic design criterion based on emulating a Cauchy random matrix. Simulations show that Cayley codes allow efficient and effective high-rate data transmission in multi-antenna communication systems without knowing the channel.

Additional Information

© 2001 IEEE.

Attached Files

Published - Cayley_codes_for_multi-antenna_differential_modulation.pdf

Files

Cayley_codes_for_multi-antenna_differential_modulation.pdf
Files (337.4 kB)

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024