Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2014 | public
Book Section - Chapter

Localized distributed optimal control with output feedback and communication delays

Abstract

This paper presents an output feedback control scheme for localizable distributed systems subject to delay, that is to say systems for which the effect of both process noise and sensor noise can be localized in closed loop despite communications delays between controllers. By reformulating the distributed optimal control problem in terms of the closed loop transfer matrices from sensor and process noise to controlled output, we cast the optimal localized distributed control problem as a finite dimensional affinely constrained convex program. We additionally show how to synthesize the controller achieving the desired closed loop response, and that the controller can be implemented in a localized and thus scalable manner, which is essential when applying the scheme to large scale systems. Simulation shows that for certain systems, our optimal controller, with its constraints on locality, settling time, and communication delay, can achieve similar performance to a centralized optimal one.

Additional Information

© 2014 IEEE. This research was in part supported by NSF NetSE, AFOSR, the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office, and from MURIs "Scalable, Data-Driven, and Provably-Correct Analysis of Networks" (ONR) and "Tools for the Analysis and Design of Complex Multi-Scale Networks" (ARO). The content does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. The authors would like to thank John C. Doyle for his enthusiastic support of this work.

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023