Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 14, 2014 | Submitted
Journal Article Open

Parafermionic conformal field theory on the lattice

Abstract

Finding the precise correspondence between lattice operators and the continuum fields that describe their long-distance properties is a largely open problem for strongly interacting critical points. Here, we solve this problem essentially completely in the case of the three-state Potts model, which exhibits a phase transition described by a strongly interacting 'parafermion' conformal field theory. Using symmetry arguments, insights from integrability, and extensive simulations, we construct lattice analogues of nearly all the relevant and marginal physical fields governing this transition. This construction includes chiral fields such as the parafermion. Along the way we also clarify the structure of operator product expansions between order and disorder fields, which we confirm numerically. Our results both suggest a systematic methodology for attacking non-free field theories on the lattice and find broader applications in the pursuit of exotic topologically ordered phases of matter.

Additional Information

© 2014 IOP Publishing Ltd. Received 24 July 2014, revised 17 September 2014. Accepted for publication 19 September 2014. Published 27 October 2014. It is a pleasure to thank Erez Berg, Chetan Nayak, Miles Stoudenmire, and Mike Zaletel for helpful discussions related to this work. We also acknowledge funding from the NSF through grants DMR-1341822 (D. C. & J. A.) and DMR/MPS1006549 (P. F.) ; the Sherman Fairchild Foundation (R. M.) ; the Alfred P. Sloan Foundation (J. A.) ; the Bi-National Science Foundation and I-Core: the Israel Excellence Center 'Circle of Light' (N. L.) ; the Caltech Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation; and the Walter Burke Institute for Theoretical Physics at Caltech. This work was completed at the Topological Phases and Quantum Computation Workshop 2014 under the hospitality of the Moorea Ecostation Center for Advanced Studies.

Attached Files

Submitted - 1406.0846v2.pdf

Files

1406.0846v2.pdf
Files (933.0 kB)
Name Size Download all
md5:a474c8e452b3dbe6b1a84032ca37a8bd
933.0 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023