Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 20, 1985 | Published
Journal Article Open

A critical analysis of ClO and O_3 in the mid-latitude stratosphere

Abstract

In the upper stratosphere, an altitude range in which ozone should be in photochemical steady-state, calculated ozone abundances that are derived from a one-dimensional photochemical model with updated chemistry are up to 60% smaller than mean observed values. On the other hand, the model results for the key free radicals (HO_x, NO_x, and ClO_x species) in the catalytic destruction of ozone are shown to be in reasonable agreement with available measurements. The general validity of the model simulation of ClO_x chemistry is confirmed through a detailed intercomparison between the computed ClO diurnal variation and recently published ground-based microwave observations. Since many field measurements are performed near sunrise or sunset, the uncertainties in the model results arising from the details of the radiation field calculations at large zenith angles are discussed. Although the calculated ozone discrepancy could be the result of a number of errors in adopted photochemical parameters, a sensitivity analysis shows that no reasonable change in any one or two parameters can resolve this problem. The limited available observations regarding the ratio of atomic oxygen to ozone suggest a possible discrepancy in that quantity, which could be responsible for a large part of the ozone problem.

Additional Information

© 1985 by the American Geophysical Union. Paper number 5D0467. Received August 13, 1984; revised April 9, 1985; accepted April 17, 1985. This work was facilitated by discussions and communications (often in advance of publication) with many individuals. In this respect, we thank J. W. Birks, W. B. DeMore, R. L. de Zafra, P. Fabian, C. B. Farmer, J. E. Frederick, G. W. Kattawar, L. F. Keyser, M. T. Leu, J. J. Margitan, R. T. Menzies, M. j. Moiina, S.S. Prasad, O. F. Raper, S. P. Sander, N. D. Sze, P.M. Solomon, and J. W. Waters. This research was supported by NASA grant NAGW-413. Contribution 4011 of the Division of Geological and Planetary Sciences, California Institute of Technology.

Attached Files

Published - jgrd415.pdf

Files

jgrd415.pdf
Files (3.1 MB)
Name Size Download all
md5:e7abdff80a2a7265a7b88dea66e8d64c
3.1 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023