Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2014 | Published
Journal Article Open

Equilibration of the Antarctic Circumpolar Current by Standing Meanders

Abstract

The insensitivity of the Antarctic Circumpolar Current (ACC)'s prominent isopycnal slope to changes in wind stress is thought to stem from the action of mesoscale eddies that counterbalance the wind-driven Ekman overturning—a framework verified in zonally symmetric circumpolar flows. Substantial zonal variations in eddy characteristics suggest that local dynamics may modify this balance along the path of the ACC. Analysis of an eddy-resolving ocean GCM shows that the ACC can be broken into broad regions of weak eddy activity, where surface winds steepen isopycnals, and a small number of standing meanders, across which the isopycnals relax. Meanders are coincident with sites of (i) strong eddy-induced modification of the mean flow and its vertical structure as measured by the divergence of the Eliassen–Palm flux and (ii) enhancement of deep eddy kinetic energy by up to two orders of magnitude over surrounding regions. Within meanders, the vorticity budget shows a balance between the advection of relative vorticity and horizontal divergence, providing a mechanism for the generation of strong vertical velocities and rapid changes in stratification. Temporal fluctuations in these diagnostics are correlated with variability in both the Eliassen–Palm flux and bottom speed, implying a link to dissipative processes at the ocean floor. At larger scales, bottom pressure torque is spatially correlated with the barotropic advection of planetary vorticity, which links to variations in meander structure. From these results, it is proposed that the "flexing" of standing meanders provides an alternative mechanism for reducing the sensitivity of the ACC's baroclinicity to changes in forcing, separate from an ACC-wide change in transient eddy characteristics.

Additional Information

© 2014 American Meteorological Society. Manuscript received 24 July 2013, in final form 19 March 2014. AFT gratefully acknowledges support from the National Science Foundation (OCE-1235488), and ACNG support from a Philip Leverhulme Prize. Development of the ideas in this study have benefited from conversations with Ryan Abernathey, Toby Bischoff, Stuart Bishop, Chris Hughes, Kurt Polzin, Andrew Stewart, and Jan Zika. We thank Andy Hogg and an anonymous reviewer for comments that significantly improved this manuscript.

Attached Files

Published - jpo-d-13-0163.1.pdf

Files

jpo-d-13-0163.1.pdf
Files (5.3 MB)
Name Size Download all
md5:be33039dd130d65e5b2757ea3085b4ed
5.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023