Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 28, 2014 | Submitted
Report Open

Linear and nonlinear capacitive coupling of electro-opto-mechanical photonic crystal cavities

Abstract

We fabricate and characterize a microscale silicon electro-opto-mechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.

Additional Information

This work was supported by the DARPA MESO program, the AFOSR Hybrid Nanophotonics MURI, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. AP gratefully acknowledge funding from EU through Marie Curie Actions, project NEMO (GA 298861). AT acknowledges partial financial support from the ERC through the advanced grant SoulMan.

Attached Files

Submitted - 1407.2982.pdf

Files

1407.2982.pdf
Files (1.9 MB)
Name Size Download all
md5:de329cc04043e720630493f2e4f6638f
1.9 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 26, 2023