Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 7, 2014 | Published
Journal Article Open

Solar energy conversion via hot electron internal photoemission in metallic nanostructure: Efficiency estimates

Abstract

Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

Additional Information

© 2014 American Institute of Physics Publishing LLC. Received 31 October 2013; accepted 15 February 2014; published online 1 April 2014. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DESC0004993. P.N. is supported by a National Science Foundation Graduate Research Fellowship and by the Resnick Sustainability Institute.

Attached Files

Published - 1.4870040.pdf

Files

1.4870040.pdf
Files (575.8 kB)
Name Size Download all
md5:3a4acb3cd634e458f82cbe3c4e302409
575.8 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 26, 2023