Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 11, 2014 | Supplemental Material
Journal Article Open

High-Temperature Thermoelectric Properties of the Solid−Solution Zintl Phase Eu_(11)Cd_6Sb_(12−x)As_x (x < 3)

Abstract

Zintl phases are compounds that have shown promise for thermoelectric applications. The title solid–solution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu_(11)Cd_6Sb_(12–x)As_x (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr_(11)Cd_6Sb_(12) structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ~3 resulted in structures other than the Sr_(11)Cd_6Sb_(12) structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu_(11)Cd_6Sb_(10)As_2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.78–0.49 W/mK for x = 0; 0.72–0.53 W/mK for x = 1; and 0.70–0.56 W/mK for x = 2. Eu_(11)Cd_6Sb_(12) shows a high p-type Seebeck coefficient (from +118 to 153 μ V/K) but also high electrical resistivity (6.8 to 12.8 mΩ·cm). The value of zT reaches 0.23 at 774 K. The properties of Eu_(11)Cd_6Sb_(12–x)As_x are interpreted in discussion with the As site substitution.

Additional Information

© 2014 American Chemical Society. Received: October 10, 2013. Revised: January 5, 2014. Published: January 6, 2014. We thank Prof. Marilyn Olmstead for assistance with crystallography, Dr. Sarah Roeske for assistance with microprobe analysis, Dr. Catherine Uvarov at Romny Scientific Inc. for assistance with the hot press, and Dr. Oliver Janka for many helpful discussions. This research was funded by GAANN fellowship and NSF DMR-1100313. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Research carried out at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

Attached Files

Supplemental Material - cm403345a_si_001.pdf

Supplemental Material - cm403345a_si_002.cif

Supplemental Material - cm403345a_si_003.cif

Supplemental Material - cm403345a_si_004.cif

Files

cm403345a_si_001.pdf
Files (467.6 kB)
Name Size Download all
md5:b9aff062e9abaa8b63227f6f0af17d47
356.6 kB Preview Download
md5:8d4dd9ae259b375d9704af84caf308b4
37.4 kB Download
md5:db57517bf8c31b5fcd466033f9515617
36.5 kB Download
md5:1571263d7f70a3a4588ac711372ed81f
37.1 kB Download

Additional details

Created:
August 19, 2023
Modified:
October 26, 2023