Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2012 | public
Book Section - Chapter

Scheduling for charging plug-in hybrid electric vehicles

Abstract

We construct a dynamic stochastic model to study the scheduling problem for battery charging of multiple (possibly a large number of) PHEVs. Our model incorporates the stochasticity in future PHEV arrival process and future renewable generation. The objective of scheduling is to maximize the overall social welfare, which is derived from total customer utility, the electricity cost associated with PHEV charging, and the non-completion penalty for not satisfying PHEVs' charging requests. Through a dynamic programming formulation, we show the Less Laxity and Longer remaining Processing time (LLLP) principle: priority should be given to vehicles that have less laxity and longer remaining processing times, if the non-completion penalty (as a function of the additional time needed to fulfill the unsatisfied charging request) is convex. We introduce various forms of improved polices generated from a given heuristic policy according to the LLLP principle, and show that these improved polices can only improve social welfare, compared to the original heuristic.

Additional Information

© 2012 IEEE. This research was supported in part by the optimization and control for smart grids LDRDDR project 20100030DR at the Los Alamos National Laboratory and by a Graduate Fellowship from Shell.

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023