Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 14, 2013 | Published
Journal Article Open

Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition

Abstract

The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.

Additional Information

© 2013 Journal of Visualized Experiments. Date published: 11/14/2013. We thank C. Montojo, J. Reyes, and M. Armour for technical advice and assistance. This work was supported by US National Institutes of Health grant F31 NS063550 (to D.A.L.), a Basil O'Connor Starter Scholar Award and grants from the Klingenstein Fund and NARSAD (to S.B.). S.B. is a W.M. Keck Distinguished Young Scholar in Medical Research. J.W. has a research funding and consultation agreements with Xstrahl, Inc.

Attached Files

Published - Lee_2013pe50716.pdf

Files

Lee_2013pe50716.pdf
Files (561.0 kB)
Name Size Download all
md5:2592b2161d213c7bc72bcba8a55deffe
561.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023