Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1, 2013 | Published + Submitted
Journal Article Open

The Nearby, Young, Isolated, Dusty Star HD 166191

Abstract

We report an in-depth study of the F8-type star HD 166191, identified in an ongoing survey for stars exhibiting infrared emission above their expected photospheres in the Wide-field Infrared Survey Explorer all-sky catalog. The fractional IR luminosity measured from 3.5 to 70 μm is exceptionally high (L IR/L bol ~ 10%). Near-diffraction-limited imaging observations with the T-ReCS Si filter set on the Gemini South telescope and adaptive optics imaging with the NIRC2 Lp filter on the Keck II telescope confirmed that the excess emission coincides with the star. Si-band images show a strong solid-state emission feature at ~10 μm. Theoretical evolutionary isochrones and optical spectroscopic observations indicate a stellar age in the range 10-100 Myr. The large dust mass seen in HD 166191's terrestrial planet zone is indicative of a recent collision between planetary embryos or massive ongoing collisional grinding associated with planet building.

Additional Information

© 2013 American Astronomical Society. Received 2013 March 5; accepted 2013 September 4; published 2013 October 17. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovaciόn Productiva (Argentina). (Some of) The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This research has made use of the SIMBAD database and VizieR catalog access tool, operated at CDS, Strasbourg, France. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation, and the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work is based (in part) on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research made use of data products from the Midcourse Space Experiment. Processing of the data was funded by the Ballistic Missile Defense Organization with additional support from NASA Office of Space Science. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The research was partially supported by NASA grants to UCLA and UGA. C.M. acknowledges support from the National Science Foundation under award No. AST-1003318. A portion of this work was supported by the National Science Foundation under grant No. AST-1203023.

Attached Files

Published - 0004-637X_777_1_78.pdf

Submitted - 1308.0405v2.pdf

Files

1308.0405v2.pdf
Files (1.1 MB)
Name Size Download all
md5:029ca118a4fae36fc17daecbc34b5ad1
677.2 kB Preview Download
md5:580704762b0a7d67ee96ce0b03cb79bd
461.5 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023