Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 1997 | public
Journal Article

On the evolution of laminar vortex rings

Abstract

Using Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV), the physical properties of laminar vortex rings are investigated in the Reynolds-number range 830 ≤ Re ≤ 1650. The measured initial circulations of the vortex rings are found to agree well with corrected versions of the vorticity-flux (slug-flow) model proposed by Didden and Pullin. The DPIV and LDA data show excellent agreement regarding local velocities and vortex-ring circulations. The DPIV data depict the distribution of the vorticity and circulation in the core regions, where the resulting vorticity distributions are found to be self-similar Gaussian profiles. The propagation velocity of the vortex rings is well approximated by an analytical model of Saffman for large core sizes. In the asymptotic limit t → ∞, the trajectories are in excellent agreement with the exact Stokes-dipole solution of Cantwell and Rott.

Additional Information

© 1997 Springer-Verlag. Received: 11 October 1995; Accepted: 22 March 1996. The support of the Office of Naval Research (ONR-URI grant N00014-92-J-1610) under the program management of Dr. Edwin Rood is gratefully acknowledged.

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024