Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2010 | public
Journal Article

Protein Crystallization using Microfluidic Technologies Based on Valves, Droplets, and SlipChip

Abstract

To obtain protein crystals, researchers must search for conditions in multidimensional chemical space. Empirically, thousands of crystallization experiments are carried out to screen various precipitants at multiple concentrations. Microfluidics can manipulate fluids on a nanoliter scale, and it affects crystallization twofold. First, it miniaturizes the experiments that can currently be done on a larger scale and enables crystallization of proteins that are available only in small amounts. Second, it offers unique experimental approaches that are difficult or impossible to implement on a larger scale. Ongoing development of microfluidic techniques and their integration with protein production, characterization, and in situ diffraction promises to accelerate the progress of structural biology.

Additional Information

Copyright �c 2010 by Annual Reviews. First published online as a Review in Advance on February 1, 2010. DISCLOSURE STATEMENT: The authors are listed as coinventors on University of Chicago patents or patent applications for some methods presented in this article. Rustem F. Ismagilov was a consultant to deCODE Biostructures. ACKNOWLEDGMENTS: Authors work in this area was supported by the Department of Energy under section H.35 of Department of Energy Contract No. DE-AC02–06CH11357 to UChicago Argonne, LLC, to manage Argonne National Laboratory, NIH Protein Structure Initiative Specialized Centers Grant GM074961 (ATCG3D), and the National Institutes of Health through the NIH Roadmap for Medical Research, Grant 5 R01 GM075827. Information on Membrane Protein Production and Structure Determination can be found at http://nihroadmap.nih.gov/structuralbiology/. We thank Elizabeth B. Haney and Heidi Park for their contributions to writing and editing this manuscript.

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023